
The technology behind
avr_sim

A brief description of the avr_asm software

by

Gerhard Schmidt, Kastanienallee 20, D-64289 Darmstadt/Germany

Draft version as of April 2020 



1 Why Lazarus and Pascal?
avr_sim is completely written in Lazarus-Pascal. The following reasons are behind this:

1. The Lazarus compiler is available for several operating systems. The same source code can 
simply be compiled to run under any of those other operating systems. Only minor changes 
have to be made, mainly caused by different fonts available under Win and Lin. I do the 
main work under Windows, copy the Pascal code files and the forms to Linux, re-design the 
forms to fit the different font settings under Linux, compile it, test it and release the exe-
cutables for Windows and Linux. I’d like to say thank you, Lazarus developers, for that reli-
able piece of software.

2. The  standard  components  for  composing  the  user  interface  (buttons,  edit  fields,  com-
boboxes, memos, listboxes, string grids, images, the editor SynEdit), are very simple to ap-
ply and to fit those to the needs here. I designed and wrote the editor highlighter for AVR 
assembler code simply from a very simple example, by adding my very special additional 
code (recognition of the AVR mnemonics, of directives and functions, of def.inc and user-
defined constants) step-by-step. So the design work can concentrate mainly on the opti-
mization of the user interface. And they really look-alike and function similarly under every 
operating system in Lazarus, without having to care for the underlying very different li-
braries.

3. The integrated assembler, gavrasm, has a long history: I started in 2003 to develop this as a  
command line application, because ATMEL did not react on serious error reports on its soft-
ware. The source code for gavrasm was written in Delphi-PASCAL, I changed only later to 
Free Pascal (FPC) just because FPC was also available for Linux, and Delphi remained 
windows-oriented. As the source code for gavrasm was written in PASCAL, it was simple 
to adapt it to fit to the simulator. Adaptation was very simple: most of the code did not need 
any additional work, just replaced the WRITELN and refitted the old-style Function result 
settings. Mainly only the command line output operations had to be changed. Since then I 
do the bug-fixing work under avr_sim and simply copy the changes to the gavrasm source 
code. As gavrasm is now 16 years old and has riped over the 45 released versions most of 
the invested work paid out in avr_sim.

4. Finally, the main reason was that I program continuously in Pascal since 1985 (when Bor-
land released Turbo-Pascal 1.0 for DOS), but programming was never been my paid profes-
sion. I learned other languages, too, but Pascal (and especially FPC and Lazarus) are, for 
me, simpler to program, to comfortably debug, and has all one needs for a complex soft-
ware project.

2 How files and hardware work

2.1 Handling files in avr_sim
The main unit of avr_sim, avr_sim_u1, handles files in a record array of the type TIncl. An assem-
bler project has four types of files: source code files (*.asm), include files with source code (*.inc), 
the assembler listing (*.lst) and a gavrasm-specific error file that lists all assembler error messages 



(*.err). The array aFile spans from -2 (for the error message file) over -1 (for the listing) over 0 (the 
main source code file) to maximal 10 (for all include files). The number of files of a project is han-
dled in the variable nFiles.

The TIncl record consists of the following components:

1. Strings: sName is the short name of the file, without the path, sFile is the complete path 
plus filename plus filetype extension, the string sBreak has a length of the file’s number 
of lines, consists of blanks and of the character “B” for those lines that have an activated 
breakpoint, the same structure has the string sLineTypes, but it has additional characters 
(such as “C” for pure comments, “L” for labels, “I” for instructions, etc.).  

2. Points: pCaretPos holds the current editor position (column, line) when the file is loaded 
into the editor window.

3. Bookmark positions: The line-numbers in which any bookmarks (between 0 and 9) are 
located in the file are stored in an array aBookMark of integers. Those bookmarks are 
restored whenever the file is loaded into the editor.

4. Boolean value fAnyBookMarks is true if the file has at least one bookmark.

5. An integer iTopLine holds the line-number that is first displayed in the editor window, so 
switching between edited files always show the same layout for each specific file. 

6. The integer iChanged holds the file’s age stamp, to be able to detect if an external editor 
has changed the file.

All this information is stored in project files (*.pro), is saved and restored whenever such a project  
file is opened.

The tab above the editor window displays the file names in the following row: 

1. The main assembler source code file,

2. all included files (max. 10),

3. the assembler listing (if assembled),

4. the error listing (if assembled and errors resulted).

Note that the content of the file in the editor window is always loaded from the stored file, when-
ever the file is selected in the tab. If changes to its content are made, the new content has to be 
stored whenever you change to another tab position, otherwise your changes would be lost.

The file that is currently loaded into the editor is enumerated in the variable nEdit. It’s value be-
tween -2 and +10 points to the respective TIncl array. Whenever the user clicks on the file tabs, or 
when the assembler has finished a different file is pointed to, saving the old file content, reloading 
the next file’s content, and changing nEdit accordingly.

2.2 The AVR’s hardware
When the user

• creates a new assembler file using “Project” and “New” in the menu, or



• opens an existing .asm file using “Project” and “New from asm”, or

• opens a project file .pro using “Project” and “Open” from the menu, or

• opens an already processed project file from “Project” and “Open previous” by selecting one 
of the stored projects,

then avr_sim either opens the related project file (and reads the information from there), and/or 
opens the related .asm file and reads it. avr_sim then searches for .include directives in the .asm file. 
If there are such directives, the related file names are analyzed. If it is a def.inc, that the directive  
points to, avr_sim extracts the type of device from that. If the include directive’s file is not a known 
def.inc, then it adds the included file to its file list.

All def.inc files that are known by avr_sim are in the unit gavrdev.pas. For each known device (cur-
rently 302) the following information is available in a record of the type TDevice:

• sn: the device’s name as a string,

• sdi: the device’s include file name as a string,

• nf, ns, ne: the device’s size of flash, SRAM and EEPROM memory in bytes,

• nr: the device’s number of available registers (usually 32, but 16 for AVR8L types),

• nss: the byte address that the SRAM starts with (normally 0x0060, but in larger devices the 
SRAM starts beyond that),

• iSet: a 32-bit word that encodes the device’s instruction set, see the constants  hasDoc to 
hasMathExt defined below for the bit meanings,

• fSreg: is true if the SREG’s port address is 0x003F, otherwise the port address is encoded in 
one of the following manners,

• sBits, soSym, sStd and sSym: these are strings that define all symbols of the device (see the 
constants sBitNames and aStdSym for encoding details), all symbols are stored in a com-
pressed form and are decompressed by respective routines: the functions  GetDeviceSym-
bolFirst and GetDeviceSymbolNext provide functions that return symbol name and value 
pairs,  one  by  one,  to  transfer  those  to  the  symbol  storage  space  provided  in  the  unit 
gavrsymb.pas.

All those information in this unit are derived from the currently 302 def.inc files that are part of the 
latest versions of the Studio and get updated by me twice per year. The def.inc files in the Studio 
are  28.5 MB in size. Due to the compressed encoding the derived PASCAL unit has only 826 kB 
source code size and compiles to 3.5 MB (one eights or 12% of the original def.inc files). That is 
why gavrasm and avr_sim are so much faster than the Studio elephant.

If the type of device  has been found this way, the available hardware in this device is identified. 
Two different information sources are used for that:

1. the symbols from the def.inc file, as available from the gavrsymb unit described above,

2. the unit avr_sim_deviceu.pas: this unit provides for 169 different device type groups (with 
457 avr devices) the pin names. 



The latter unit is designed as follows. Each device type (such as ATtiny4/5/9/10) has a string in the 
aDevice array constant, that consists of the following:

1. the device group name (such as ATtiny4/5/9/10), followed by a blank, if subversions such as 
PB or alike differ from the base versions without PB, those have an own entry,

2. the devices group’s package forms, separated by blanks if more than one identical forms, if 
there are different pinnings in different package forms or if the same device comes in differ-
ent packages, each form gets a separate entry,

3. then all pins follow, starting with an asterisk, if the pin has more than one possible function 
the functions are separated by blanks.

With those two information sources the available hardware in each type can be derived. If a symbol 
named “ADC3” is defined in the def.inc or if a pin function “ADC3” exists in the pinning of the de-
vice, then the AVR type has at least 4 ADC channels. Similarly the internal timers can be identified 
by searching for the symbols TCCRn (in older devices), if TCCRnL and TCCRnH are defined then 
its a 16-bit TC, otherwise 8-bit. TCCRnA and TCCRnB, with n=0 to maxAvrTimer also determine 
the number of active TCs. If those symbols exist, the port addresses can be read and assigned with 
their  names.  Similarly  the  OCRnA,  OCRnB and  OCRnC pins  can  be  identified  from the  unit 
avr_sim_deviceu. That makes it simple to identify all the available hardware and to assign their 
port addresses to those.

The following hardware information is additionally read from the unit deviceclock:

• the AVR’s default clock in Hz,

• if the device has a CLKDIV8 fuse,

• if the device can toggle port pins by writing ones to the device’s pin port,

• the frequency of the device’s watchdog timer oscillator in Hz, and

• the base prescaler value of the device’s watchdog, that can be doubled with the watchdog 
prescaler bits.

Hardware identification is performed in the  procedure GetInternalHardware. The following hard-
ware components are searched for:

1. the clock prescaler CLKPR,

2. max six external INTn,

3. Sleep modes,

4. I/O ports (PORTn, DDRn, PINn),

5. I/O port pins for max, 12 ports from A to L,

6. INTn pin locations,

7. max 40 PCINTn pin locations,

8. all timer relevant properties such as

◦ the timer’s OC pin locations and their respective port locations,



◦ the timer’s input pins and their location,

◦ all interrupt ports of timers,

◦ control ports,

9. the watchdog timer, and

10. all max 16 ADC ports and pins.

All ports get pairs of names and addresses, all bit locations in those ports are identified to be able to 
simulate those bit combinations correctly.

With these information the hardware of the device used is completely known and accessible. The re-
spective units (e.g. the TC unit) care for the timer relationships (e.g. configuration of the timer, 
timer ticks, hardware action on comparer events, timer interrupts, etc.).

3 Code execution

3.1 Hex code generation
The hex code to be executed is generated by the integrated gavrasm command line assembler: it as-
sembles  the  source  code  and  produces  a  hex  code  file  in  Intel  hex  format  and  with  the 
extension .hex.

If assembling was successful the generated hex file is read and its content is written word-wise to 
the flash array aFlash, located in the avr_simul_u1 unit. The code is read from that array.

3.2 Code decoding and execution
Starting from the flash address 0000, the hex code there is read from the array by the procedure Ex-
ecuteStep. This decodes the instruction words as follows:

1. If the code is $FFFF, an uninitiated part of the flash memory is accessed and an error mes-
sage is processed.

2. The upper six bits of the code are then isolated and serve as a pre-selector for the instruc-
tions:

◦ A zero  stands  for  the  multiple  instructions  NOP or  for  MOVW/MULS/MULSU/
FMUL/FMULSU Rd,Rr.

◦ A one stands for the instruction CPC Rd,Rr, a two stands for SBC, a three for LSL or 
ADD, and so on until 11.

◦ The following combinations use two bits of the upper six and address 8-bit constant in-
strctions:

▪ 12..15 stand for CPI Rd,K,

▪ 16..19 are for SBCI Rd,K,

▪ 20..23 stand for SUBI Rd,K, etc. until

▪ 28..31.



◦ The combinations 32..35 and 40..43 address various LD/ST and LDD/STD instructions.

◦ The combinations in between, 36..39, address a very large variety of instructions, which 
have to sub-decoded.

◦ 44..59 encode I/O, relative jumps/calls and load instructions.

◦ 60 and 61 encode relative jump instructions,

◦ 62 and 63 stand for bit manipulations in registers.

The codes that address multiple instructions (e.g. 0) use special code to recognize the different in-
structions.

The flags that instructions set or clear are held are performed by the procedure ChangeSreg, which 
expects the flag’s abbreviation (“C”, “Z”, etc.) and an “S” (for set) or a “C” (for clear) as second pa-
rameter. 

Instructions that manipulate register content read and write to the 32 registers in the aReg byte ar-
ray. 

Instructions manipulating ports, such as  OUT or  ST/STS instructions pointing to ports are per-
formed by the procedure  ChangePort. That ensures that changes to the hardware are recognized 
and the respective hardware units are aware of any changes made.

As most of the AVR instructions are single clock cycle ones, the default of advancing the clock cy-
cle counter is one. One time, or in case of more cycles several times, the routine IncClock is called 
and advances timers accordingly, according to the number of consumed clock cycles. The distance 
from the current to the next executed instruction, normally +1 but different in relative jump instruc-
tions, is held in the variable nPcAdd. That ensures that the jump leads to the correct flash location 
address.

3.3 Interrupt execution
Following each instruction execution, the procedure  ProcessIntReq is called. This routine steps 
through all entries of the interrupt list of the device (top down to implement the interrupt priority 
rule) and checks if one of the interrupt conditions is fulfilled. If that is the case this interrupt is pro-
cessed by calling ProcessInt and further list checks are skipped. Processing the interrupt disables 
the I flag, pushes the current address to the stack in SRAM, marks the int executed (in the procedure 
MarkIntExec)  and points PC to the interrupt’s vector.

If later on a RETI instruction is executed, the PC is set to the value on the stack in SRAM, the stack 
pointer is increased and the interrupt is unmarked (in the procedure UnmarkLastInt).

Both delays when starting and ending an interrupt are correctly timed by use of the IncClock proce-
dure.

4 Single hardware components
The following describes some very special hardware components and their simulation.



4.1 Ports

4.2 Timer/Counter

4.3 Watchdog timer
I added the watchdog timer in version 2.0. As the watchdog timers are very different I added two 
additional entries in the deviceclock unit:

1. The oscillator frequency of the watchdog timer, nWdOsc. 

2. The basic prescaler of the watchdog  nWdBase, to be multiplied by the binary exponents 
from the [WDP3:]WDP2:WDP1:WDP0 bits.

These values vary for many device types, and even vary between different types of the same series 
(e.g. the PA or PB versions differ from the base and A versions in some cases). So the deviceclock 
unit was updated to reflect the current state of knowledge (which ended up in adding a few missing 
types to that list, too).

As the watchdog timer runs, if enabled, asynchronously to the device’s clock source, I decided to 
program the timing separately. That means I add the time per instruction cycle (depending from the 
device’s clock frequency) each time when an instruction has been executed. Whenever the clock 
frequency changes (on project load, on CLKPR operations, etc.), the new delta time dWd has to be 
updated.  Through the many thousand single additions, the accumulation of time in the variable 
eWdt is prone to rounding errors in very large prescaler cases, but that should be a less important 
source of errors.

If the watchdog counter overruns, either a RESET happens or an interrupt is generated. The WDT- 
or WATCHDOG-interrupt fitted well into the existing interrupt scheme that was already working 
fine and reliable in avr_sim.

4.4 AD converter

4.5  EEPROM

4.6 SRAM
  

 



5 Lazarus source code and compiling
The Lazarus source code and executables produced have the following properties:

As can be seen, the number of source code files is not increasing since version 1.0 had been re-
leased. So does not the number of source code lines in all those source files. The same applies for  
the size of the generated executables and the zipped debug versions.

That means that optimizations to the code, made under each version, are highly effective and that 
avr_sim has reached a steady-state, where added additional features are compensated by code opti-
mization in other areas.

avr_sim properties Size in MB
Version Files Lines Exe debug Exe packed

2.0 43 36.937 44.501 10.756
1.9 42 36.469 44.303 10.710
1.8 47 39.373 44.300 10.711
1.7 44 36.066 44.300 10.711
1.6 42 34.757 43.149 10.411
1.5 42 34.331 40.893 9.901
1.4 40 34.145 40.878 9.898
… … … … …
1.0 42 32.157 39.819 9.655
… … … … …
0.5 37 26.032 38.368 9.289
0.2a 21 16.365 36.662 9.331
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