
Lecture 10: Assembler math
Hardware, Internals and Programming of AVR

Microcontrollers in Assembler
by

Gerhard Schmidt
Kastanienallee 20

D-64289 Darmstadt

Assembler math
● Assembler math is special because it requires writing all routines

by yourself using the available instructions that the CPU under-
stands. While in higher-level languages this is already implemen-
ted as part of the language, assembler doesn’t have this. The
advantage is that your routines are tailored exactly to your needs,
you do not waste memory space and unnecessary execution time.

● Assembler math is binary and therefore simpler than decimal
math: only zeros and ones have to be considered.

● I’ll discuss 8 and 16 bit addition and subtraction here as well as 8x8
and 16*8 bit multiplication (in software and in hardware versions)
and 8/8 and 16/8 bit division. If you need other math, see if this
website here provides examples.

● At the end I’ll demonstrate 8- and 16-bit binary-to-decimal
conversion.

http://www.avr-asm-tutorial.net/avr_en/calc/index.html

8-by-8 bit addition and subtraction
● Adding two 8 bit numbers is simple: the mnemonic for that is ADD.

● If the result is larger than 255, the carry flag C in SREG is set. If the
result is zero (= 256) the Z flag in SREG is additionally set.

● Similiarly subtraction is also simple: the mnemonic for that is SUB.

● The carry flag is set if the second number is larger than the first,
and the Z flag if both are equal.

; Adding two registers
LDI R16, 128 ; Load 128 to a register
LDI R17, 64 ; Load 64 to a second register
ADD R16, R17 ; Add the second register, result in the first register

; Subtracting two registers
LDI R16, 128 ; Load 128 to a register
LDI R17, 64 ; Load 64 to a second register
SUB R16, R17 ; Subtract the second register, result in the first register

16-by-8 bit addition and subtraction
● Adding an 8 bit number to a 16 bit number involves the carry flag.

The mnemonics for that are ADC and SBC (add or subtract with
carry).

● An alternative to branching is to write zero to the 8-bit register
and to use the ADC instruction. This adds zero plus the carry flag
to the MSB.

● Do not use CLR for writing zero to the 8-bit register, that would
clear the carry flag, too.

; Adding an 8-bit register to a 16 bit register
LDI R16, 128 ; Load 128 to a register as LSB
LDI R17, 0 ; Load 0 to the MSB
LDI R18, 240 ; Load 240 to the 8 bit register
ADD R16, R18 ; First add the 8 bit register to the LSB
BRCC NoCarry ; Branch if carry flag is clear
INC R17 ; Add the carry to the MSB

NoCarry:

16-by-16 bit addition and subtraction
● Adding a 16 bit number to a 16 bit number is also simple:

● This can be extended to more bits: just use ADC for all higher
bytes.

● Subtraction is similar: Use SUB for the LSB and SBC for all higher
bytes to be subtracted with the carry.

● What if the numbers are signed? Signed numbers use bit 7 of the
highest byte as sign bit: if it is zero, the number is positive, if it is
one, the number is negative and the number has been subtracted
from 256 (8 bit) or 65,536 (16 bit).

; Adding a 16-bit number to a 16 bit number
LDI R16, Low(1028) ; Load the LSB of 1028 to a register
LDI R17, High(1028) ; Load the MSB
LDI R18, Low(32700) ; Load the LSB of 32700 to a register
LDI R19, High(32700) ; Load the MSB
ADD R16, R18 ; First add the two LSB registers
ADC R17, R19 ; Then add the MSBs and the carry

Addition of negative numbers
● As negative numbers are stored as their negative value (256 –

number) adding two numbers, of which the second is negative, is
simple:

● Nothing has to be corrected.
● In assembler negative 16-bit numbers are handled like this:

Register Decimal Signed Binary

R16 100 0x64 0b0110.0100

R17 -20 0xEC 0b1110.1100

ADD R16, R17

R16 80 0x50 0b0101.0000

; A negative number in Z
LDI ZH, High(-20) ; MSB of the negative number
LDI ZL, Low(-20) ; LSB of the negative number

Multiplication 8 x 8
● Multiplication of 8 bits by 8 bits can yield a 16 bit result. It can be

done in two ways:

1. by software,

2. by hardware (in ATmega and in some advanced ATtiny).
• Multiplication in software goes like this:

First, rM1L and rM2 are loaded with the numbers to be multiplied.
rM1H as well as the result registers rR1H:rR1L are cleared.

7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8

*

=

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

„0“ „0“ „0“ „0“ „0“ „0“ „0“ „0“

rM1LrM1H

rM2

rR1LrR1H

Software multiplication 8 x 8
● In the first step rM2 is shifted right.

● That shifts a zero to its bit 7, shifts its bits 7 to 1 one position to
the right and its former bit 0 to the carry flag.

● If the carry flag is one, it adds rM1H:rM1L to the result registers:

If not (BRCC), no addition is done and it is jumped over.

7 6 5 4 3 2 1 0

rM2

„0“ 0

Carry

LSR rM2

7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8= 7 6 5 4 3 2 1 0

„0“ „0“ „0“ „0“ „0“ „0“ „0“ „0“

rM1LrM1H

rR1LrR1H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rR1LrR1H

+ADD rR1L, rM1L
ADC rR1H, rM1H

Software multiplication 8 x 8
● Now it is tested (TST rM2) if the multiplicator is already clear. If

that is the case, multiplication is done and the result is already
final and correct.

● If not the multiplicator rM1H:rM1L is multiplied by two, shifting
rM1L one left and rotating the carry flag into rM1H.

rM1H:rM1L now look like this:

● These steps are repeated until all ones in rM2 are treated and rM2
is empty.

7 6 5 4 3 2 1 0„0“ „0“ „0“ „0“ „0“ „0“ „0“ „0“

rM1LrM1H

„0“„0“

Carry
LSL rM1L
ROL rM1H

7 6 5 4 3 2 1 0„0“ „0“ „0“ „0“ „0“ „0“ „0“ „0“

rM1LrM1H

==>

Multiplication 8 x 8
● The process, as simulated with the maximum numbers 0xFF,

consumes 82 µs and the result in R1:R0 is correct:

● Therefore, hardware multiplication is unnecessary unless you
cannot affort this short period. So the ATtiny24, that has no
hardware multiplication on bord, is sufficient doing software
multiplication.

Multiplication 16 x 8
● Extending this scheme to multiplying 16 bits by 8 bits is simple:

just add another rM1 register to the left, such as rM1S for super,
and add another result register to the left. Now addition requires
an additional ADC and shifting an additional ROL. That is it.

● The same with 24 by 8 or 32 by 8 or 64 by 8. Add registers that the
AVR has plenty of.

● Extending the scheme to 16 by 16 is also simple: add another
rM2H to the left and add two super registers to rM1 and rR1 (the
result can now have 16 + 16 = 32 bits). Shifting the lowest bit to
carry involves an additional LSR and the previous LSR is a ROL
now. Addition adds two ADCs, multiplication of rM1 by two now
has then two additional ROLs.

● If you have understood how the 8-by-8 multiplication works, you
can do whatever multiplication.

Hardware multiplication 8 x 8
● The hardware multiplication is even simpler and faster: just add

the instruction MUL rM1, rM2 (if your AVR type has that) and the
result is in R1:R0.

● Setting the two registers to 0xFF and MUL needs only 4 µs, if the
hardware multiplicator is used.

Hardware multiplication 16 x 8
● Extending the hardware multiplication to 16 by 8 bits is not that

simple, as it requires not only one step but two.
● The 16 bit registers rM1H:rM1L * rM2 have to be multiplied using

the following scheme:

1. Multiply rM1L with rM2 and copy the result in R1:R0 to the
result registers in rR1S:rR1H:rR1L to rR1H:rR1L and clear rR1S.

2. Multiply rM1H with rM2 and add the result in R1:R0 to the
result registers rR1S:rR1H (the result registers by that are
multiplied by 256).

• Extending that scheme to 16-by-16 involves four multiplications:
rM1H:rM1L * rM2H:rM2L = rM1L*rM2L + 256*rM1H*rM2L +

256* rM1L*rM2H + 65536*rM1H*rM2H
The multiplication with 256 and 65536 is done by just adding R1:R0
to the respective and correct upper registers.

Division 8 x 8
● Division is also rather simple. It starts with loading the registers

and setting a counter to 8.

Then the divider registers are multiplied by 2. If the carry is one,
the high byte of the divider is surely larger than the divisor: the
divisor is subtracted from the high byte and a one is left-rotated
into the result. If not, the high byte is compared with the divisor.

DIV8
LDI rD1L, cN1
LDI rD2, cN2
CLR rD1H

LDI rCnt, 8

LSL rD1L
ROL rD1H C CP rD1H, rD2 C CLC

SUB rD1H, rD2
SEC

ROL rE1
DEC rCnt Z

DONE

0

1 0 0

1

1

Division 8 x 8
● If the divisor is larger than the high byte (carry after compare is

set), the carry is cleared and left-shifted into the result. If not, the
divisor is subtracted from the high byte and a one is left-shifted
into the result.

● In all cases the counter is decremented. If he reaches zero, the
division is done. If not is the cycle repeated.

● Dividing 255 by 5 re-
quires 99 µs, slightly
longer than multiplica-
tion. The result
in R19 is 0x33, which is
decimal 51 and obvi-
ously correct.

● Note that the result is
always an integer, not a fractioned number.

Division of larger numbers
● Extending division to 16 by 8 requires

1. extension of the divider to three bytes,

2. extension of the result to two bytes, and

3. 16 division steps.
● Extension to 16 by 16 requires additionally the extension of the

divisor to two bytes.
● As general rules: the divider always has to be extended by the

length of the divisor in bytes, the counter always has to be set to
the length of the divisor in bits.

● Note that in division the first step is alway the multiplication of
the divider by two, while in multiplication this step is done as last
step.

● If you need rounding: if the next division step yields a one, add 1.

Conversion of a binary to hexadecimal
● If you need conversion of a byte to a hexadecimal format to

display those (e.g. on a LCD) first convert the upper four bits
(upper nibble), then the lower four bits. Use the instructions

● SWAP R16 to exchange both nibbles in R16,
● ANDI R16, 0x0F to isolate the lower nibble in R16,
● SUBI R16, -‘0‘ to convert the binary to a hexadecimal character,

and
● SUBI R16, -7 in case that the binary nibble is larger than ‘9‘.

● It is convenient to PUSH R16 to the stack, then to SWAP and RCALL
the nibble conversion, then to POP the original and doing nibble
conversion.

● If two or more bytes have to be displayed, copy those to R16 and
RCALL the byte conversion. (See the hex conversion here).

http://www.avr-asm-tutorial.net/avr_en/apps/lcd/lcd.inc

Conversion of a binary to decimal
● If you need conversion of a byte to decimal format to display

those (e.g. on a LCD) the following algorithm can be used.
● First subtract binary 100 (0x64) until a carry occurs. These are the

hundreds. Add 100 to undo the last subtraction.
● Then subtract binary 10 (0x0A) until a carry occurs, which are the

tens. Add 10 to undo the last subtraction.
● The remaining rest of the number is the last digit.
● If you need zero suppression to blanks set a flag (e.g. T in SREG)

and exchange zeroes by blanks, as long as the flag is set. If a non-
zero digit occurs clear the flag. Do not use the flag with the last
digit.

● Extending the conversion to 16 bit numbers: start with binary
10,000, then with binary 1,000 and the lower ones and use two
bytes for subtraction.

Conversion of binaries to decimal
● As an example: here is the source code of the decimal conversion

program that uses a table with the decimal binaries to write the
binary to SRAM.

● The picture shows the conversion of hexadecimal FFFF to decimal.

● The execution lasted 206 µs.

http://www.avr-asm-tutorial.net/avr_en/course/sources/conversion.asm

Conversion of binaries to decimal
● This is the result if 0x00CC is converted. Leading zeroes are

blanked, later appearing zeros are not blanked.

● In that case conversion needed 127 µs.

Questions and tasks in Lecture 10

Task 10-1: Write a program that sets and then adds and subtracts
two 24-bit numbers.

Bonus question: How many registers would a 64-by-64 bit
addition need and what would be the largest numbers than can
so be added/subtracted? Can all living individuals in the world be
tagged with a unique 64 bit number? Who would then get
number 0 in your view?

Questions and tasks in Lecture 10 - Continued

Task 10-2: Write a program that sets and then multiplies two 16-
bit numbers.

Bonus question: How many registers would be needed to
multiply two 64-bit numbers? Can that be handled in the 32
registers in AVRs?

Questions and tasks in Lecture 10 - Continued

Task 10-3: Convert the number 12,345,678 from binary to
decimal with leading-zero-blanking.

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23

