
Path: Home => AVR-EN => Applications => DCF77 clock m16 => Date and time with AVRs

Applications of
AVR single chip controllers AT90S,

ATtiny, ATmega and ATxmega

DCF77 synchronized
alarm clock with LCD

Date and time

Date and time with an AVR in assembler
Sometimes it happens that one has to handle a date or time on an AVR, e.g. if program
ming an alarm clock. While C programmers have their large and mighty libraries (and do
not understand what those do at all), the assembler programmer has to do it by himself.
And it is pretty simple.

0 Content
1. To measure seconds as correct as necessary
2. Date and time formats
3. Date and time programming

1 To measure seconds as correct as necessary

1.1 Loops for timing
If the AVR has nothing else to do than this (this happens rarely) one can send the AVR
into an endless count to come to seconds, minutes, hours, days and years. Fortunately an
AVR is a rather silent controller and he will not cry or complain about having to do such
nonsense like counting down the seconds in a 28-bit register series from 0x01E13380
down to zero before advancing the year by one (or rather 0x01E28500 if it is a leap year).
Or, if he runs at a clock frequency of 1 MHz, to absolve 0x1CAE8C13E000 useless clock cy
cles using a 48-bit wide down-counter. He will be quit during his job, and will do as the as
sembler programmer has told him.

For counting down a second at 1 MHz clock frequency a counter is needed that can count
down from 300,000 to zero. For this we need 20 bits, a single byte or a 16-bit counter is
insufficient for that. Such a counter in assembler can be constructed as down-counter or
as up-counter. A down-counter has first to set a delay loop constant, then to down-count
(LSB first, if carry: MSB next, if carry HSB last. Hint: use SUB or SUBI to down-count in
stead of DEC because DEC does not influence the carry flag when the register is decreased
from zero to 0xFF.

That would produce a source code like this:

 ldi R16,BYTE1(cDelay) ; Set start values in R18:R17:R16
 ldi R17,BYTE2(cDelay)
 ldi R18,BYTE3(cDelay)
DelayLoop:
 subi R16,1 ; Down-count LSB
 brcc DelayCheck ; No carry: check zero
 subi R17,1 ; Down-count MSB
 brcc DelayCheck ; No carry: check zero

http://www.avr-asm-tutorial.net/index.html
http://www.avr-asm-tutorial.net/avr_en/apps/dcf77_m16/dcf77_clock_m16.html
http://www.avr-asm-tutorial.net/avr_en/apps/APPS.html
http://www.avr-asm-tutorial.net/avr_en/index.html

 subi R18,1 ; Down-count HSB
DelayCheck:
 tst R16 ; Check LSB
 brne DelayLoop
 tst R17 ; Check MSB
 brne DelayLoop
 tst R18 ; Check HSB
 brne DelayLoop
DelayEnd:
 ; One second is over

When up-counting the source code is similar:

 clr R16 ; Start from zero
 clr R17
 clr R18
DelayLoop:
 subi R16,-1 ; up-count LSB, carry flag reversed!
 brcs DelayCheck
 subi R17,-1 ; Up-count MSB, carry flag reversed!
 brcs DelayCheck
 subi R18,-1 ; Up-count HSB, carry flag reversed!
DelayCheck:
 cpi R16,BYTE1(cDelay)
 brne DelayLoop
 cpi R17,BYTE2(cDelay)
 brne DelayLoop
 cpi R18,BYTE3(cDelay)
 brne DelayLoop
DelayEnd:
 ; One second over

Now, which number cDelay should be chosen for a second? For that we need to know how
many clock cycles the whole loops require. As each BRCC/BRCS and BREQ/BRNE needs
two clock cycles in case it jumps and one clock cycle in case it does not jump, a very so
phisticated formula would be needed to calculate the complete number of cycles from a
constant cDelay, and vice versa.

The only way out of this is to construct the different branches in a way that they consume
the same number of execution cycles. Each line executed is analyzed for its clock cycles
and, with the help of NOP instructions and jumps, delayed so that each branch needs the
same clock cycles. In case of the down-counting the subtraction phase so would look like
this:

DelayLoop: ; 0 clock cycles
 subi R16,1 ; + 1 = 1 clock cycle
 brcc Delay1 ; + 1 = 2 for not jumping, + 2 = 3 for jumping
 subi R17,1 ; + 1 = 3 clock cycles
 brcc Delay2 ; + 1 = 4 for not jumping, +2 = 5 for jumping
 subi R18,1 ; +1 = 5 clock cycles
 brcc Delay3 ; +1 = 6 for not jumping, + 2 = 7 for jumping
 rjmp DelayCheck ; + 2 = 8 clock cycles
Delay1: ; 3 clock cycles
 nop ; + 1 = 4 clock cycles
 nop ; + 1 = 5 clock cycles
Delay2: ; 5 clock cycles
 nop ; + 1 = 6 clock cycles
 nop ; + 1 = 7 clock cycles
Delay3: ; 7 clock cycles

 nop ; + 1 = 8 clock cycles
DelayCheck: ; 8 clock cycles
 ; (Now check if all zero)

Now the complete execution between DelayLoop: and DelayCheck: needs 8 clock cycles,
where-ever all those branches run along. A predictable execution time for this. Now the
same for the DelayCheck: that checks if all registers are zero:

DelayCheck: ; 8 clock cycles
 tst R16 ; + 1 = 9 clock cycles
 brne DelayCont1 ; + 1 = 10 for not jumping, + 2 = 11 for jumping
 tst R17 ; + 1 = 11 clock cycles
 brne DelayCont2 ; + 1 = 12 for not jumping, + 2 = 12 for jumping
 tst R18 ; + 1 = 13 for not jumping, + 2 = 14 for jumping
 breq DelayEnd ; + 1 = 14 for not jumping, + 2 = 15 for jumping
 rjmp DelayLoop ; + 2 = 16
DelayCont1: ; 11 clock cycles
 nop ; + 1 = 12 clock cycles
DelayCont2: ; 12 clock cycles
 nop ; + 1 = 13 clock cycles
 nop ; + 1 = 14 clock cycles
 rjmp DelayLoop ; + 2 = 16
DelayEnd: ; 15 clock cycles
 nop ; + 1 = 16 clock cycles
 ; One second is over

So the whole number of clock cycles N needed is
N = 3 + 16 * cDelay

of which the 3 is for the initial phase of setting the registers, and cDelay for one second
can be calculated simply like this:

cDelay = (N - 3) / 16

The result for N = 1,000,000 is 62,499 (rounded down), which corresponds to 3 + 62,499
* 16 = 999,987 cycles. If you need to be more exact (see accuracy discussion below), you
can add 13 NOP instructions at the end.

Note that in our example R18 is zero, because 62,499 fits into two registers and we can
skip that, but without removing the code (because that would change code execution
times and with a shorter loop would go beyond the 16 bit limit).

With those instruments we can construct whatever type of counting loops (three, four,
five, etc. bytes) to fit to any time (minutes, hours, days and years) to arrive at an exact
timing.

1.2 Timer as clock counter
Get rid of the boring counting by the use of built-in timers. Those timers can count up
(and sometimes down, too) and they are very reliable and predictable. They are in any
case doing their jobs even if numerous interrupts or other tasks happen in between.

Unfortunately timers and their prescalers work in binary mode, so they like the two's more
than the ten's. If our clock rate is at 1 MHz (which is more the ten's domain) a timer
which divides by 64 yields 15,625. The next higher binary divider, 128, already has a fre
quency which is not an integer value but has a fraction following. Not to speak about di
vider rates of 256, 2,048 or 16,384 or even higher (for which all timers have a prescaler).

1.2.1 16-bit timer with a crystal

As a clock device needs a crystal anyway to be exact enough, we can select xtal frequen
cies that better fit to binaries, e.g. 2.048 MHz, 2.097152 MHz, 2.4576 Mhz, 3.072 MHz,
3.2768 MHz or 4.194304 MHz.

This here are the divider
rates when using possible
prescaler values in 8- and
16-bit timers. We see that
the 8-bit timer has rather
low divider rates even with a
prescaler of 1,024. To come
down to one second our xtal would have to be either of the 32,768 Hz type or hand-craft
ed to our selected frequency. And: the controller would act but would act like a lame duck
at those low frequencies.

More promising is a 16-bit timer with a prescaler of 64. Xtals with a frequency of
4.194,304 MHz are sold on each street corner or electronics store and cost around
25 Cents. With that the seconds timer is already complete, just do the following:

1. attach the Xtal and two ceramic capacitors of 18 pF
to GND to an AVR that has an internal Xtal oscillator,

2. change the fuses of the AVR to use an external xtal
with medium or high frequency,

3. copy the interrupt vector table of the controller with
all RETI except for the Reset vector (RJMP Start) and
the overflow interrupt for TC1 (RJMP TC1OvfIsr),

4. write an overflow interrupt service routine "TC1Ov
fIsr" for the timer with the two instructions SET (set
the T flag in the status register) and RETI (Return
from Interrupt),

5. in the main program "Start:" init the stack pointer,
6. then set the 16-bit timer to normal operation and the prescaler to 64,
7. enable TC1 overflow interrupts (TOIE1) and the interrupts generally with SEI, and
8. ask in a loop if the seconds flag T is set, if yes clear it with CLT and do what you'll

want to do in each second.

That is all you need for a xtal controlled clock. Anything else that you want to do with that
seconds pulse, e.g. advancing time and date counters, displaying on an LCD or on a 7-
segment display, can last as long as necessary: the timer works correct if that does not
last longer than two seconds. Which is rather long, even with a lame-duck type of 32.768-
kHz-oscillator.

• Those who find a 4.1 MHz clock too fast and want to save battery current, or
• who do not find such an Xtal on their street corner,
• who need the 16-bit timer for other more valuable purposes, e.g. to play a melody

with it when the clock reaches 07:30 in the morning,

can find other solutions for that.

1.2.2 8-bit timer with a register divider

In any case the selected xtal frequency di
vided by the prescaler and by the timer
used has to be a pure integer value. If the
result of the division is not one but an in
teger value: use an 8-bit (smaller or equal
256) or a 16-bit register (256 to 65,536)

to divide the resulting frequency down to one.

With the above named xtals an 8-bit timer has the following register divider values.

These are the crystals that
can be used with an 8-bit
timer, the different
prescalers and a register
divider. Red marked regis
ter dividers are 16-bit,
green marked ones are 8 bit. Only at 3.072 MHz a 16-bit divider is necessary.

In Assembler dividing within the overflow interrupt service routine goes like this:

 ; Calculation constants
 .equ clock = 2097152 ; Xtal frequency
 .equ prescaler = 1024
 .equ timertop = 256
 .equ second_divider = clock / timertop / prescaler ; = 8
 ;
 ; Registers
 .def rSreg = R15 ; Save status
 .def rSeconddivider = R17 ; Counter down
 .def rFlag = R18 ; Flag register
 .equ bSek = 0 ; Second flag in flag register
;
Tc0OvflwInt:
 in rSreg,SREG ; Save SREG
 dec rSeconddivider ; Divide by 8
 brne TC0OvflwIntRet ; Not yet zero
 ldi rSecondendivider,second_divider ; Restart divider
 sbr rFlag,1<<bSek ; Set seconds flag: one second is over
Tc0OvflwIntRet:
 out SREG,rSreg ; Restore SREG
 reti

1.2.3 Timer in CTC mode

The method does not fit well if you are addicted to a certain clock frequency due to other
reasons. Only at 4.0 MHz and an 8-bit timer dividing by 256 the integer 15.625 results.
This can be divided in a 16-bit register, such as R25:R24, by use of the instruction SBIW
R24,1. When the timer reaches zero, it is restarted with 15,625 and the second is over.
This does not work on many other frequencies. But for those there is another method
available.

Many nice clock frequencies such as 1 or 2 MHz do not work with those methods. In those
cases the timer has to be made more ten-friendly by clearing it when he reaches a count
of 100 or 250. This can be done in the so-called CTC mode (Clear Timer on Compare). If
the counter reaches the value that is stored in its Compare Port Register COMPA, the next
count will restart the timer at zero (in 16-bit timers the Input Capture Port Register ICR
can also be used for the comparison purpose). The one extra clock cycle means that the
compare value has to be one smaller than the desired division rate. If you need the same
timer also for other purposes, e.g. as a pulse width generator, the CTC mode setting also
alters its resolution.

With 1 MHz clock the prescaler can be set to 64 (which means 15,625 kHz on the timer in
put), can set the compare value to 124 (dividing with CTC by 125) and dividing with a
register divider by 125 to yield one second. Many other frequencies can be counted down
like that to an exact second.

Provided that we have

• the counter running,
• its interrupts enabled (TOIE0/TOIE1 with an overflow int resp. OCIE0A/OCIE1A with

a compare match A int),
• the main interrupt flag I in SREG is set,
• the interrupt vector is properly set and branches to the service routine, and
• the stack is initiated and works properly.

Top of page Seconds Formats Date and time

2 Date and time formats
Dates and times can be handled in four different usual formats. Fortunately all those for
mats can be converted into each other.

Instead of dividing the day into two halves (AM and PM) we use here the European nota
tion for hours (0 to 23).

2.1 Time in ASCII format
This is the simplest format in respect
to displaying the time on an LCD:
each digit in one byte, encoded as
ASCII character. ASCII has been de
signed for some US teletype ma
chines, so it has some interesting
control codes between characters 0 and 31, such as BEL for wringing a bell on your tele
type - ahem, computer. Or the character number 13, which moves the write head to the
left side to the margin (carriage return). Or number 10, that moves the printing paper of
the teletype printer by one line up (linefeed). As those low level codes of ASCII were al
ready occupied for this kind of pseudo characters the numbers start with code number 48
for zero and reach until 57 for nine. The rest of the ASCII codes is not used for time en
coding, only the ':' character makes some sense here.

Writing the numbers as '0' to '9' means that the ASCII representation is meant. Even as
semblers understand that:

 ldi R16,'0' ; Load ASCII 0
 ldi R17,'7' ; Load ASCII 7
 ldi R18,':' ; Load : character as separator

If we want to write eight characters to SRAM we reserve space in SRAM for it:

.dseg
TimeAscii:
.bytes 8

and write the following code:

.cseg
 ldi ZH,HIGH(TimeAscii) ; Point to SRAM address
 ldi ZL,LOW(TimeAscii)
 ldi R16,'0' ; Load ASCII 0

 st Z+,R16 ; Store in SRAM and increase address
 ldi R16,'1'
 st Z+,R16
 ldi R16,':'
 st Z+,R16
 ldi R16,'2'
 st Z+,R16
 ldi R16,'3'
 st Z+,R16
 ldi R16,':'
 st Z+,R16
 ldi R16,'4'
 st Z+,R16
 ldi R16,'5'
 st Z,R16

A different formulation for that would be:

 ldi YH,High(TimeAscii) ; MSB of the SRAM address to YH
 ldi YL,Low(TimeAscii) ; LSB to YL
 ldi R16,'0' ; ASCII-Null in R16
 st Y,R16 ; To Hour-Tens
 inc R16
 std Y+1,R16 ; To Hour-Ones
 inc R16
 std Y+3,R16 ; To Minutes-Tens
 inc R16
 std Y+4,R16 ; To Minute-Ones
 inc R16
 std Y+6,R16 ; To Second-Tens
 inc R16
 std Y+7,R16 ; To Second-Ones
 ldi R16,':' ; Separator to R16
 std Y+2,R16 ; To the first separator location
 std Y+5,R16 ; To the second separator location

STD (and when reading: LDD) does not change Y but temporarily adds the displacement
behind + and writes the byte in R16 to this location. This works with Y and Z, but not with
X.

To increase the second-ones by one second. If this leads to the ASCII character behind '9',
it has to restart with '0' and has to increase the second-tens. With the constant address in
Y that goes like that:

 ldi YH,High(TimeAscii) ; MSB of the SRAM address to YH
 ldi YL,Low(Zeit) ; LSB to YL
 ldd R16,Y+7 ; Read second-ones to R16
 inc R16 ; Increase second-ones by one
 std Y+7,R16 ; Write increased second-ones
 cpi R16,'9'+1 ; Compare with ASCII code for next char behind nine
 brcs Done ; If carry set no overflow to next higher digit
 ldi rmp,'0' ; Restart second-ones
 std Y+7,R16 ; Write ASCII-zero to second-ones
 ldd R16,Y+6 ; Read second-tens
 inc R16 ; Increase second-tens
 std Y+6,R16 ; and write back to second-tens
 cpi R16,'6' ; Second-tens at six?
 brcs Done ; No, ready
 ; ... Minutes and hours similarly
Fertig:

 ; ... Done with the clock increase

When increasing the hour, those two criteria come into play:

• if the hour-ones are larger than '9', and
• if the hour-ones are four AND the hour-tens are '2'.

By using the relative addressing with STD and LDD time increasing gets rather simple.

2.2 Time in BCD format
With this second method the ones and tens of
seconds, minutes and hours are not stored as
ASCII characters but as binary encoded deci
mal digits (BCD). Those bytes range from bi
nary 0 (0b00000000) to binary 9
(0b00001001) for the ones, from 0 to 5 for the second- and minute-tens and from 0 to 2
for the hour-tens.

The comparison if the ones have exceeded the nine is now done with the instruction CPI
R16,10 instead of CPI R16,'9'+1. Restart of the ones is done with CLR R16 instead of LDI
R16,'0'. Anything else remains the same, but the ':' makes no sense any more and is in
serted when displaying the time but has no own SRAM location.

When displaying the BCD codes on the LCD one simply has to add 48 to the BCD. Because
there is no ADDI instruction on the AVR, there are three different ways around for that:

1. We write the 48 to another register (e.g. LDI R17,48) and add this register to the
BCD in R16: ADD R16,R17.

2. Set the bits bits 4 and 5 in the BCD with either ORI R16,0x30 or with SBR
R16,0x30 or with SBR R16,(1<<4)|(1<<5).

3. Subtract -48 from the BCD with SUBI R16,-'0'. Subtracting a negative number is
the same as adding the positive number.

All three methods have the same result. Only the first methods is different because it re
quires an additional register.

When displaying on the LCD do not forget to insert the separator on the correct location,
otherwise the time would look a bit strange.

2.3 Time in packed BCD format
Because a BCD needs only four bits,
you can pack two of those into one
byte - and save some memory and
registers. The ones are fine in the
lower four bits (0 to 3), the tens fit
into the upper four bits (4 to 7). The
package of four bits are called lower and upper "nibble". The complete set of time infor
mation now fits into three bytes. The format is called "packed BCD".

If we want to increase such a second, minute or hour we can use INC R16, too. But it is
more complicated then to detect whether the lower nibble exceeded 9: first we would
have to copy the register (MOV R17,R16), then we have to clear the upper nibble (ANDI
R17,0x0F) and then we can compare this with 10 (CPI R17,10) to decide if we would have
to add (0x10 - 10) to R16, by that clearing the lower nibble and increasing the upper nib
ble.

The more simple solution for that uses a special hardware feature that each CPU, including
the AVR CPUs, has: the half-overflow flag H in the status register. This flag bit signals if

during adding an overflow from the lower to the upper nibble occurred. To use this feature
we add 7 to the lower nibble: if the lower nibble was nine before adding, a half overflow
would occur setting the H flag. The upper nibble would be increased and would already be
fine. In case that the lower nibble was not nine H is clear and we would have to subtract 6
from the result. The conditional branching instructions BRHC and BRHS can be used.

The source code would be:

 ; Increase lower nibble of R16
 ldi R17,7 ; Add 7 to packed BCD
 add R16,R17 ; in R16
 brhs DoNotSubtract6
 ldi R17,6 ; Subtract 6 from packed
 sub R16,R17 ; from R16
DoNotSubtract6:
 ; Done

To save one register (R17) we can use SUBI R16,-7 instead, but the H-bit now is also re
versed: it is cleared when a half overflow occurred and set if not. So BRHS will have to be
changed to BRHC.

Even though it is a little bit more complicated to increase the lower nibble it is much sim
pler to check if seconds or minutes exceed 59 or the hours exceed 23: just compare the
packed BCD with the next higher limit.

 cpi R16,0x60 ; Compare seconds with 60
 brne done
 clr R16 ; Restart seconds
 ; ...
 cpi R17,0x60 ; Compare minutes with 60
 brne done
 clr R17 ; Restart minutes
 ; ...
 cpi R18,0x24 ; Compare hours with 24
 brne done
 clr R18 ; Restart hours
 ; ...

Instead of two registers to be compared now we have only one to be compared if the
hours reached 24. And instead of two registers to be cleared there is only one. A clear ad
vantage of packed BCD over ASCII and BCD.

The whole packed BCD second increase as assembler source code:

 ldi ZH,High(sTimePbcd) ; Z points to hours in packed BCD format
 ldi ZL,Low(sTimePbcd)
 ldd R16,Z+2 ; Read the seconds
 subi R16,-7 ; Add seven
 brhc ChkSec ; H clear, tens increased, check seconds for 60
 subi R16,6 ; H set, subtract six
ChkSec:
 std Z+2,R16 ; Write seconds
 cpi R16,0x60 ; 60 seconds?
 brcs Done ; No, completed
 ; One minute is over
 clr R16 ; Restart seconds
 std Z+2,R16 ; Write seconds to SRAM
 ldd R16,Z+1 ; Read minutes
 subi R16,-7 ; Add seven

 brhc ChkMin ; H clear, tens increased, check minutes for 60
 subi R16,6 ; H set, subtract six
ChkMin:
 std Z+1,R16 ; Write minutes to SRAM
 cpi R16,0x60 ; 60 minutes reached?
 brcs Done ; No, completed
 ; One hour is over
 clr R16 ; Restart minutes
 std Z+1,R16 ; And write to SRAM
 ld R16,Z ; Read hours
 subi R16,-7 ; Add seven
 st Z,R16 ; And write to SRAM
 brhc ChkHour ; H clear, tens increased, check hours for 24
 subi R16,6 ; H set, subtract six
 st Z,R16 ; and write to SRAM
ChkHour:
 cpi R16,0x24 ; 24 hours over?
 brcs Done ; Smaller than 24
 clr R16 ; Restart hours
 st Z,R16 ; Write to SRAM
 ; Increase date here
Done: ; Increase done

This is it. Those who do not believe that it works can simulate the source code by setting
the SRAM location sTimePbcd to some desired values, such as 0x23:0x59:0x59 and run
through the code.

To display the time formatted as packed BCDs on an LCD the upper nibble has to convert
ed to an ASCII character, then the lower nibble. In case of the hours that goes like that:

 ld R16,Z ; Z points to hour in SRAM, read hours
 swap R16 ; Exchange nibbles: make upper to lower nibble
 and R16,0x0F ; Isolate lower nibble
 subi R16,-'0' ; Add ASCII zero
 rcall LcdChar ; R16 to LCD
 ld R16,Z ; Read hours again
 andi R16,0x0F ; Isolate lower nibble
 subi R16,-'0' ; Add ASCII zero
 rcall LcdChar ; R16 to LCD

The further display of the separator, the minutes, another separator and the seconds is all
the same. If you use the instruction LD R16,Z+ for the second copy from SRAM instruc
tion, you can call the above hour display three times and you are done.

That is all and your time processing is complete in packed BCD.

2.4 Time in binary format
Finally the simplest of all time formats: sec
onds, minutes and hours in binary format.
As a maximum of 59 has to be handled all
fits into one byte. Increasing by one second
is done with INC R16, detection of the com
plete minutes and hours is with CPI R16,60 resp. CPI R16,24. The following example of
seconds increase assumes that the time is in three registers.

 .def rHour = R4 ; Hours register
 .def rMin = R5 ; Minutes register

 .def rSec = R6 ; Seconds register
IncSec:
 ldi R16,60 ; Detect end of seconds and minutes
 inc rSec
 cp rSec,R16 ; Seconds smaller than minute end?
 brcs Done ; No
 clr rSec ; Restart seconds
 inc rMin ; Increase minutes
 cp rMin,R16 ; Minutes smaller than hour end?
 brcs Done ; No
 clr rMin ; Restart minuts
 inc rHour ; Increase hours
 ldi R16,24 ; Hours per day
 cp rHour,R16 ; Hours smaller than day end?
 brcs Done ; No
 clr rHour ; Restart hours
Done:
 ; Time increase done

With those 14 simple instructions for a 24 hour clock it is a simple thing to program a
clock. No reason at all to include a powerful datetime library and blow up those 14 simple
instructions by at least 100-fold.

The display of the binary encoded time information now requires a binary-to-decimal-
to-ASCII conversion. The following routine converts the binary in R16 to two ASCII digits
and displays those on the LCD.

Bin2Dec2:
 clr R0 ; Count tens in R0
Bin2Dec2a:
 inc R0 ; Increase counter
 subi R16,10 ; Subtract 10
 brcc Bin2Dec2a ; No carry, repeat counting and subtract
 subi R16,-10-48 ; Undo last subtraction (add 10) and
 ; convert to ASCII (add 48)
 push R16 ; Is needed later on, pushed to stack
 ldi R16,'0'-1 ; Counter minus one plus ASCII zero
 add R16,R0 ; Add counter value
 rcall LcdChar ; R16 as character to LCD
 pop R16 ; Restore second digit from stack
 rjmp LcdChar ; and write to LCD

The routine LcdChar, usually in the LCD include code, displays the character in R16 on the
current position on the LCD and advances the cursor to the next position on the LCD. Due
to the use of RCALL and PUSH/POP the stack has to be working.

For testing the routine you can point Z to the SRAM location SRAM_START and instead of
the include routine LcdChar: you use ST Z+,R16 and RET to write the converted ASCII
characters to SRAM.

The complete display of the time then goes like this:

Display:
 mov R16,rStd ; Hours to R16
 rcall Bin2Dec2 ; Call conversion and display routine
 ldi R16,':' ; Separator
 rcall LcdChar ; to LCD
 mov R16,rMin ; Minutes to R16
 rcall Bin2Dec2 ; Call conversion/display
 ldi R16,':' ; Another separator

 rcall LcdChar ; to LCD
 mov R16,rSec ; Seconds to R16
 rjmp Bin2Dec2 ; Jump to conversion/display

With these 20 instructions, of which 10 are for the display of binaries on the LCD, the
whole stuff is not too sophisticated.

2.5 The best format
... is of course the binary, but the other three formats have also their pro's. So choose
what you want, anything goes.

Top of page Seconds Formats Date and time

3 Time and date
After having handled times we can handle dates as well. It works like times but has some
extra rules making it a little bit more complicated:

• Pope Gregor the XIIIth has, in the year 1582, issued the bulletin "Inter gravissi
mas", which decided that in contrary to seconds, minutes, hours and years days
and years do not start with zero but with a one,

• the fact that the speed of the earth in rouding the sun is not a simple number but
has some fractional parts (365.242188 days), that make it necessary to define
some extra time to the 365 days. The Egyptians rounded this up a bit (to 365.25
days) and worked with that when they defined their tax paying algorithm. Pope
Gregor wanted to be more exact, but did not e.g. define an extra "Earth rumble
day" with a special duration of 5 hours, 48 minutes, 45 seconds, 43 milliseconds,
199 microseconds and a few nanoseconds. Instead of this simple solution pope Gre
gor went into a much more sophisticated algorithm that makes the life of calendar
designers and assembler programmers more complicated,

• he decided that the months have not an equal number of days, e.g. ten months
from 0 to 9, with 36 days each (day 0 to 35), but defined 12 months instead, even
though 365 / 12 = 30.416666 (periodic) and started with 1 instead,

• the decision to choose 12 as the month's basis leaded to further complicated conse
quences:

• the number of days per month was not a constant but varied,
• this number of days did not follow simple rules, e.g. such as 30/31 alternat

ing with the December length varying, but the alternating rule was reversed
between July and August and February's length was largely varied,

• the February's length was defined as being 28, but
• not every four years if the year can be divided by four without a frac

tional part, then it is 29 days long,
• but not every 100 years, when the year can be divided by 100 without

a fractional part, then it is 28 days long,
• but not every 400 years, when the year can be divided by 400 without

a fractional part, then it is 29 days long,
• he further decided that one week has seven weekdays and not 10, an ancient

"magic" number rather than a decimal's society preferred selection, but
• their numbering remained undefined, still causing confusion: some start with the

Monday, others with the Sunday.

When writing dates on the LCD, and when storing those in SRAM, further illogical decisions
complicate the life of the assembler programmers. While the time follows the simple rule
that the further left is the more significant number (hours:minutes:seconds) dates are
confused by other rules:

• The format convention Days:Months:Years reverses priority.
• The format convention Months/Days/Years simply confuses any priority rule.
• The format convention Years:Months:Days would be similar to the time format, but

is rarely used.

But whatever you want to use: place them in the same row in SRAM as you want to dis
play them, either forwards or backwards, so your pointer can increase or decrease after
having outputted it. Or use displacement pointers.

This all makes programmers con
fused. To determine the number of
days of a month we need this algo
rithm. Looks complicated but isn't
that complicated in assembler:

;
; Subroutine calculates the
number of days of a month
; Month in rMonth, Year in
rYear, result in rDom
;
DaysOfMonth:
 ldi rDom,31 ; 31 days
 cpi rMonth,2 ; February?
 brcs DaysOfMonthRet ; January
 brne DaysOfMonth1 ; Not
February
 ; February
 ldi rDom,28 ; No leap year
 mov R16,rYear ; Leap year?
 andi R16,0x03 ; Last two bits
of year?
 brne DaysOfMonthRet ; Last two
bits not 00
 ldi rDom,29 ; Leap year
 rjmp DaysOfMonthRet
DaysOfMonth1:
 mov R16,rMonth ; Copy month
 cpi R16,8
 brcs DaysOfMonth2 ; March to July
 dec R16 ; Monthes larger or equal August, reverse
DaysOfMonth2:
 ldi rDom,31 ; Months with 31 days
 andi rmp,0x01 ; Uneven?
 brne DaysOfMonthRet
 ldi rDom,30
DaysOfMonthRet:
 ret ; Done

Simulation of the DOM
routine with the mon
thes 1 to 12 for a leap
year (first line) and a
non-leap year (second
line) demonstrates that the days for the months (+01 to +0C), as written to the SRAM,
are correct.

Simulation was, of course, performed with avr_sim.

http://www.avr-asm-tutorial.net/avr_sim/index_en.html

With these tools we can start to design a com
plete time and date flow diagram for a
date/time clock. Rectangles are calculations,
rhombuses are display operations and squares
rotated by 45 degrees are decisions or condi
tional branches.

In the algorithm only those display elements
are updated that are changed during an in
crease of that second. As a change of the year
requires an update to all displayed elements on
the LCD the update algorithm runs from bot
tom to the top while the time and date algo
rithm runs from top to bottom.

The first decision is that the date and time on
the LCD is controlled by a different routine dur
ing a date and time input. Note that in that
case the increase in time does not work but
waits for a completion of the input procedure.

Here the complete increase time/date routine
in assembler:

;
; Increase time in seconds
;
IncSec:
 ldi ZH,High(DateTimeBuffer)
 ldi ZL,Low(DateTimeBuffer)
 ldd R16,Z+6 ; Seconds
 inc R16
 std Z+6,R16
 cpi R16,60
 brcs DisplaySec
 clr R16
 std Z+6,R16
 ldd R16,Z+5 ; Minutes
 inc R16
 std Z+5,R16
 cpi R16,60
 brcs DisplayMin
 clr R16
 std Z+5,R16
 ldd R16,Z+4 ; Hours
 inc R16
 std Z+4,R16
 cpi R16,24
 brcs DisplayHours
 clr R16
 std Z+4,R16
 ld R16,Z ; Weekdays
 inc R16
 st Z,R16
 cpi R16,7
 brcs IncDay
 clr R16
 st Z,R16
IncDay:
 rcall DaysOfMonth ; Get days of that month in R16
 inc R16
 mov rData,R16

 ldd R16,Z+1
 inc R16
 std Z+1,R16
 cp R16,R0
 brcs DisplayWeekdays
 ldi R16,1
 std Z+1,R16
 ldd R16,Z+2 ; Monthes
 inc R16
 std Z+2,R16
 cpi R16,13
 brcs DisplayMonthes
 ldi R16,1
 std Z+2,R16
 ldd R16,Z+3 ; Years
 inc R16
 cpi R16,100
 std Z+3,R16
 brcs DisplayYears
 clr R16
 std Z+3,R16
DisplayYears:
 ; ...
DisplayMonthes:
 ; ...
DisplayWeekdays:
 ; ...
DisplayHours:
 ; ...
DisplayMinutes:
 ; ...
DisplaySeconds:
 ; ...
 ret

To simulate the work of IncSec: here a few tests. First, the year change on the 31nd of
December, 2017, is shown. The line from address

• 0x0070 shows the original data for the Sunday at that date, for 23:23:59, in binary
format,

• 0x0080 shows the date/time increased by one second, as binary,
• 0x0090 displays the original date/time in ASCII, and
• 0x00B0 on shows the increased date/time in ASCII.

The change in the year works correct.

Simulation was again, of course, performed with avr_sim.

http://www.avr-asm-tutorial.net/avr_sim/index_en.html

This simulates the seconds increase for February 28, 2019, which was not a leap year.
Also correct.

And this is the seconds increase on February 28, 2020, which is a leap year. The routine
obviously works correct.

I wish you success in the self-making of date/time routines in assembler.

Top of page Seconds Formats Date and time

©2018 by http://www.avr-asm-tutorial.net

http://www.avr-asm-tutorial.net/

	Date and time with an AVR in assembler
	0 Content
	1 To measure seconds as correct as necessary
	1.1 Loops for timing
	1.2 Timer as clock counter
	1.2.1 16-bit timer with a crystal
	1.2.2 8-bit timer with a register divider
	1.2.3 Timer in CTC mode

	2 Date and time formats
	2.1 Time in ASCII format
	2.2 Time in BCD format
	2.3 Time in packed BCD format
	2.4 Time in binary format
	2.5 The best format

	3 Time and date

