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Date and time with an AVR in assembler
Sometimes it happens that one has to handle a date or time on an AVR, e.g. if program
ming an alarm clock. While C programmers have their large and mighty libraries (and do 
not understand what those do at all), the assembler programmer has to do it by himself. 
And it is pretty simple. 
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1 To measure seconds as correct as necessary

1.1 Loops for timing
If the AVR has nothing else to do than this (this happens rarely) one can send the AVR 
into an endless count to come to seconds, minutes, hours, days and years. Fortunately an 
AVR is a rather silent controller and he will not cry or complain about having to do such 
nonsense like counting down the seconds in a 28-bit register series from 0x01E13380 
down to zero before advancing the year by one (or rather 0x01E28500 if it is a leap year). 
Or, if he runs at a clock frequency of 1 MHz, to absolve 0x1CAE8C13E000 useless clock cy
cles using a 48-bit wide down-counter. He will be quit during his job, and will do as the as
sembler programmer has told him.

For counting down a second at 1 MHz clock frequency a counter is needed that can count
down from 300,000 to zero. For this we need 20 bits, a single byte or a 16-bit counter is 
insufficient for that. Such a counter in assembler can be constructed as down-counter or 
as up-counter. A down-counter has first to set a delay loop constant, then to down-count 
(LSB first, if carry: MSB next, if carry HSB last. Hint: use SUB or SUBI to down-count in
stead of DEC because DEC does not influence the carry flag when the register is decreased 
from zero to 0xFF.

That would produce a source code like this: 

  ldi R16,BYTE1(cDelay) ; Set start values in R18:R17:R16
  ldi R17,BYTE2(cDelay)
  ldi R18,BYTE3(cDelay)
DelayLoop:
  subi R16,1 ; Down-count LSB
  brcc DelayCheck ; No carry: check zero
  subi R17,1 ; Down-count MSB
  brcc DelayCheck ; No carry: check zero
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  subi R18,1 ; Down-count HSB
DelayCheck:
  tst R16 ; Check LSB
  brne DelayLoop
  tst R17 ; Check MSB
  brne DelayLoop
  tst R18 ; Check HSB
  brne DelayLoop
DelayEnd:
  ; One second is over

When up-counting the source code is similar: 

  clr R16 ; Start from zero
  clr R17
  clr R18
DelayLoop:
  subi R16,-1 ; up-count LSB, carry flag reversed!
  brcs DelayCheck
  subi R17,-1 ; Up-count MSB, carry flag reversed!
  brcs DelayCheck
  subi R18,-1 ; Up-count HSB, carry flag reversed!
DelayCheck:
  cpi R16,BYTE1(cDelay)
  brne DelayLoop
  cpi R17,BYTE2(cDelay)
  brne DelayLoop
  cpi R18,BYTE3(cDelay)
  brne DelayLoop
DelayEnd:
  ; One second over

Now, which number cDelay should be chosen for a second? For that we need to know how 
many clock cycles the whole loops require. As each BRCC/BRCS and BREQ/BRNE needs 
two clock cycles in case it jumps and one clock cycle in case it does not jump, a very so
phisticated formula would be needed to calculate the complete number of cycles from a 
constant cDelay, and vice versa.

The only way out of this is to construct the different branches in a way that they consume 
the same number of execution cycles. Each line executed is analyzed for its clock cycles 
and, with the help of NOP instructions and jumps, delayed so that each branch needs the 
same clock cycles. In case of the down-counting the subtraction phase so would look like 
this: 

DelayLoop: ; 0 clock cycles
  subi R16,1 ; + 1 = 1 clock cycle
  brcc Delay1 ; + 1 = 2 for not jumping, + 2 = 3 for jumping
  subi R17,1 ; + 1 = 3 clock cycles
  brcc Delay2 ; + 1 = 4 for not jumping, +2 = 5 for jumping
  subi R18,1 ; +1 = 5 clock cycles
  brcc Delay3 ; +1 = 6 for not jumping, + 2 = 7 for jumping
  rjmp DelayCheck ; + 2 = 8 clock cycles
Delay1: ; 3 clock cycles
  nop ; + 1 = 4 clock cycles
  nop ; + 1 = 5 clock cycles
Delay2: ; 5 clock cycles
  nop ; + 1 = 6 clock cycles
  nop ; + 1 = 7 clock cycles
Delay3: ; 7 clock cycles



  nop ; + 1 = 8 clock cycles
DelayCheck: ; 8 clock cycles
  ; (Now check if all zero)

Now the complete execution between DelayLoop: and DelayCheck: needs 8 clock cycles, 
where-ever all those branches run along. A predictable execution time for this. Now the 
same for the DelayCheck: that checks if all registers are zero: 

DelayCheck: ; 8 clock cycles
  tst R16 ; + 1 = 9 clock cycles
  brne DelayCont1 ; + 1 = 10 for not jumping, + 2 = 11 for jumping
  tst R17 ; + 1 = 11 clock cycles
  brne DelayCont2 ; + 1 = 12 for not jumping, + 2 = 12 for jumping
  tst R18 ; + 1 = 13 for not jumping, + 2 = 14 for jumping
  breq DelayEnd ; + 1 = 14 for not jumping, + 2 = 15 for jumping
  rjmp DelayLoop ; + 2 = 16
DelayCont1: ; 11 clock cycles
  nop ; + 1 = 12 clock cycles
DelayCont2: ; 12 clock cycles
  nop ; + 1 = 13 clock cycles
  nop ; + 1 = 14 clock cycles
  rjmp DelayLoop ; + 2 = 16
DelayEnd: ; 15 clock cycles
  nop ; + 1 = 16 clock cycles
  ; One second is over

So the whole number of clock cycles N needed is
N = 3 + 16 * cDelay

of which the 3 is for the initial phase of setting the registers, and cDelay for one second 
can be calculated simply like this:

cDelay = (N - 3) / 16

The result for N = 1,000,000 is 62,499 (rounded down), which corresponds to 3 + 62,499 
* 16 = 999,987 cycles. If you need to be more exact (see accuracy discussion below), you 
can add 13 NOP instructions at the end.

Note that in our example R18 is zero, because 62,499 fits into two registers and we can 
skip that,  but without removing the code (because that would change code execution 
times and with a shorter loop would go beyond the 16 bit limit). 

With those instruments we can construct whatever type of counting loops (three, four, 
five, etc. bytes) to fit to any time (minutes, hours, days and years) to arrive at an exact 
timing. 

1.2 Timer as clock counter
Get rid of the boring counting by the use of built-in timers. Those timers can count up 
(and sometimes down, too) and they are very reliable and predictable. They are in any 
case doing their jobs even if  numerous interrupts or other tasks happen in between.  

Unfortunately timers and their prescalers work in binary mode, so they like the two's more 
than the ten's. If our clock rate is at 1 MHz (which is more the ten's domain) a timer 
which divides by 64 yields 15,625. The next higher binary divider, 128, already has a fre
quency which is not an integer value but has a fraction following. Not to speak about di
vider rates of 256, 2,048 or 16,384 or even higher (for which all timers have a prescaler). 



1.2.1 16-bit timer with a crystal

As a clock device needs a crystal anyway to be exact enough, we can select xtal frequen
cies that better fit to binaries, e.g. 2.048 MHz, 2.097152 MHz, 2.4576 Mhz, 3.072 MHz, 
3.2768 MHz or 4.194304 MHz.

This  here  are  the  divider 
rates  when  using  possible 
prescaler  values  in  8-  and 
16-bit  timers.  We  see  that 
the  8-bit  timer  has  rather 
low divider rates even with a 
prescaler of 1,024. To come 
down to one second our xtal would have to be either of the 32,768 Hz type or hand-craft
ed to our selected frequency. And: the controller would act but would act like a lame duck 
at those low frequencies.

More  promising  is  a  16-bit  timer  with  a  prescaler  of  64.  Xtals  with  a  frequency  of 
4.194,304 MHz  are  sold  on  each  street  corner  or  electronics  store  and  cost  around 
25 Cents. With that the seconds timer is already complete, just do the following: 

1. attach the Xtal and two ceramic capacitors of 18 pF 
to GND to an AVR that has an internal Xtal oscillator,

2. change the fuses of the AVR to use an external xtal 
with medium or high frequency, 

3. copy the interrupt vector table of the controller with 
all RETI except for the Reset vector (RJMP Start) and 
the overflow interrupt for TC1 (RJMP TC1OvfIsr), 

4. write an overflow interrupt service routine "TC1Ov
fIsr" for the timer with the two instructions SET (set 
the T flag in the status register) and  RETI (Return 
from Interrupt), 

5. in the main program "Start:" init the stack pointer, 
6. then set the 16-bit timer to normal operation and the prescaler to 64, 
7. enable TC1 overflow interrupts (TOIE1) and the interrupts generally with SEI, and 
8. ask in a loop if the seconds flag T is set, if yes clear it with CLT and do what you'll 

want to do in each second. 

That is all you need for a xtal controlled clock. Anything else that you want to do with that 
seconds pulse, e.g. advancing time and date counters, displaying on an LCD or on a 7-
segment display, can last as long as necessary: the timer works correct if that does not 
last longer than two seconds. Which is rather long, even with a lame-duck type of 32.768-
kHz-oscillator. 

• Those who find a 4.1 MHz clock too fast and want to save battery current, or 
• who do not find such an Xtal on their street corner, 
• who need the 16-bit timer for other more valuable purposes, e.g. to play a melody 

with it when the clock reaches 07:30 in the morning, 

can find other solutions for that. 

1.2.2 8-bit timer with a register divider

In any case the selected xtal frequency di
vided by the  prescaler  and by the  timer 
used has to be a pure integer value. If the 
result of the division is not one but an in
teger value: use an 8-bit (smaller or equal 
256) or a 16-bit register (256 to 65,536) 



to divide the resulting frequency down to one. 

With the above named xtals an 8-bit timer has the following register divider values.

These are the crystals that 
can be used with an 8-bit 
timer,  the  different 
prescalers  and  a  register 
divider.  Red marked regis
ter  dividers  are  16-bit, 
green marked ones are 8 bit. Only at 3.072 MHz a 16-bit divider is necessary.

In Assembler dividing within the overflow interrupt service routine goes like this: 

  ; Calculation constants
  .equ clock = 2097152 ; Xtal frequency
  .equ prescaler = 1024
  .equ timertop = 256
  .equ second_divider = clock / timertop / prescaler ; = 8 
  ;
  ; Registers
  .def rSreg = R15 ; Save status
  .def rSeconddivider = R17 ; Counter down
  .def rFlag = R18 ; Flag register
  .equ bSek = 0 ; Second flag in flag register
;
Tc0OvflwInt:
  in rSreg,SREG ; Save SREG
  dec rSeconddivider ; Divide by 8
  brne TC0OvflwIntRet ; Not yet zero
  ldi rSecondendivider,second_divider ; Restart divider
  sbr rFlag,1<<bSek ; Set seconds flag: one second is over
Tc0OvflwIntRet:
  out SREG,rSreg ; Restore SREG
  reti

1.2.3 Timer in CTC mode

The method does not fit well if you are addicted to a certain clock frequency due to other 
reasons. Only at 4.0 MHz and an 8-bit timer dividing by 256 the integer 15.625 results. 
This can be divided in a 16-bit register, such as R25:R24, by use of the instruction SBIW 
R24,1. When the timer reaches zero, it is restarted with 15,625 and the second is over. 
This does not work on many other frequencies. But for those there is another method 
available.

Many nice clock frequencies such as 1 or 2 MHz do not work with those methods. In those 
cases the timer has to be made more ten-friendly by clearing it when he reaches a count 
of 100 or 250. This can be done in the so-called CTC mode (Clear Timer on Compare). If 
the counter reaches the value that is stored in its Compare Port Register COMPA, the next 
count will restart the timer at zero (in 16-bit timers the Input Capture Port Register ICR 
can also be used for the comparison purpose). The one extra clock cycle means that the 
compare value has to be one smaller than the desired division rate. If you need the same 
timer also for other purposes, e.g. as a pulse width generator, the CTC mode setting also 
alters its resolution. 

With 1 MHz clock the prescaler can be set to 64 (which means 15,625 kHz on the timer in
put), can set the compare value to 124 (dividing with CTC by 125) and dividing with a 
register divider by 125 to yield one second. Many other frequencies can be counted down 
like that to an exact second.



Provided that we have 

• the counter running, 
• its interrupts enabled (TOIE0/TOIE1 with an overflow int resp. OCIE0A/OCIE1A with 

a compare match A int), 
• the main interrupt flag I in SREG is set, 
• the interrupt vector is properly set and branches to the service routine, and 
• the stack is initiated and works properly. 
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2 Date and time formats
Dates and times can be handled in four different usual formats. Fortunately all those for
mats can be converted into each other.

Instead of dividing the day into two halves (AM and PM) we use here the European nota
tion for hours (0 to 23). 

2.1 Time in ASCII format
This is the simplest format in respect 
to  displaying  the  time  on  an  LCD: 
each  digit  in  one  byte,  encoded  as 
ASCII character. ASCII has been de
signed  for  some  US  teletype  ma
chines,  so  it  has  some  interesting 
control codes between characters 0 and 31, such as BEL for wringing a bell on your tele
type - ahem, computer. Or the character number 13, which moves the write head to the 
left side to the margin (carriage return). Or number 10, that moves the printing paper of 
the teletype printer by one line up (linefeed). As those low level codes of ASCII were al
ready occupied for this kind of pseudo characters the numbers start with code number 48 
for zero and reach until 57 for nine. The rest of the ASCII codes is not used for time en
coding, only the ':' character makes some sense here.

Writing the numbers as '0' to '9' means that the ASCII representation is meant. Even as
semblers understand that: 

  ldi R16,'0' ; Load ASCII 0
  ldi R17,'7' ; Load ASCII 7
  ldi R18,':' ; Load : character as separator

If we want to write eight characters to SRAM we reserve space in SRAM for it: 

.dseg
TimeAscii:
.bytes 8

and write the following code: 

.cseg
  ldi ZH,HIGH(TimeAscii) ; Point to SRAM address
  ldi ZL,LOW(TimeAscii)
  ldi R16,'0' ; Load ASCII 0



  st Z+,R16 ; Store in SRAM and increase address
  ldi R16,'1'
  st Z+,R16
  ldi R16,':'
  st Z+,R16
  ldi R16,'2'
  st Z+,R16
  ldi R16,'3'
  st Z+,R16
  ldi R16,':'
  st Z+,R16
  ldi R16,'4'
  st Z+,R16
  ldi R16,'5'
  st Z,R16

A different formulation for that would be: 

  ldi YH,High(TimeAscii) ; MSB of the SRAM address to YH
  ldi YL,Low(TimeAscii) ; LSB to YL
  ldi R16,'0' ; ASCII-Null in R16
  st Y,R16 ; To Hour-Tens
  inc R16
  std Y+1,R16 ; To Hour-Ones
  inc R16
  std Y+3,R16 ; To Minutes-Tens
  inc R16
  std Y+4,R16 ; To Minute-Ones
  inc R16
  std Y+6,R16 ; To Second-Tens
  inc R16
  std Y+7,R16 ; To Second-Ones
  ldi R16,':' ; Separator to R16
  std Y+2,R16 ; To the first separator location
  std Y+5,R16 ; To the second separator location

STD (and when reading: LDD) does not change Y but temporarily adds the displacement 
behind + and writes the byte in R16 to this location. This works with Y and Z, but not with 
X.

To increase the second-ones by one second. If this leads to the ASCII character behind '9', 
it has to restart with '0' and has to increase the second-tens. With the constant address in 
Y that goes like that: 

  ldi YH,High(TimeAscii) ; MSB of the SRAM address to YH
  ldi YL,Low(Zeit) ; LSB to YL
  ldd R16,Y+7 ; Read second-ones to R16
  inc R16 ; Increase second-ones by one
  std Y+7,R16 ; Write increased second-ones
  cpi R16,'9'+1 ; Compare with ASCII code for next char behind nine
  brcs Done ; If carry set no overflow to next higher digit
  ldi rmp,'0' ; Restart second-ones
  std Y+7,R16 ; Write ASCII-zero to second-ones
  ldd R16,Y+6 ; Read second-tens
  inc R16 ; Increase second-tens
  std Y+6,R16 ; and write back to second-tens
  cpi R16,'6' ; Second-tens at six?
  brcs Done ; No, ready
  ; ... Minutes and hours similarly
Fertig:



  ; ... Done with the clock increase  

When increasing the hour, those two criteria come into play: 

• if the hour-ones are larger than '9', and 
• if the hour-ones are four AND the hour-tens are '2'. 

By using the relative addressing with STD and LDD time increasing gets rather simple. 

2.2 Time in BCD format
With this second method the ones and tens of 
seconds, minutes and hours are not stored as 
ASCII characters but as binary encoded deci
mal digits (BCD). Those bytes range from bi
nary  0  (0b00000000)  to  binary  9 
(0b00001001) for the ones, from 0 to 5 for the second- and minute-tens and from 0 to 2 
for the hour-tens.

The comparison if the ones have exceeded the nine is now done with the instruction CPI 
R16,10 instead of CPI R16,'9'+1. Restart of the ones is done with CLR R16 instead of LDI 
R16,'0'. Anything else remains the same, but the ':' makes no sense any more and is in
serted when displaying the time but has no own SRAM location.

When displaying the BCD codes on the LCD one simply has to add 48 to the BCD. Because 
there is no ADDI instruction on the AVR, there are three different ways around for that: 

1. We write the 48 to another register (e.g. LDI R17,48) and add this register to the 
BCD in R16: ADD R16,R17. 

2. Set  the  bits  bits  4  and  5  in  the  BCD with  either  ORI  R16,0x30 or  with  SBR 
R16,0x30 or with SBR R16,(1<<4)|(1<<5). 

3. Subtract -48 from the BCD with  SUBI R16,-'0'. Subtracting a negative number is 
the same as adding the positive number. 

All three methods have the same result. Only the first methods is different because it re
quires an additional register.

When displaying on the LCD do not forget to insert the separator on the correct location, 
otherwise the time would look a bit strange. 

2.3 Time in packed BCD format
Because a BCD needs only four bits, 
you can pack two of those into one 
byte - and save some memory and 
registers.  The ones  are  fine  in  the 
lower four bits (0 to 3), the tens fit 
into the upper four bits (4 to 7). The 
package of four bits are called lower and upper "nibble". The complete set of time infor
mation now fits into three bytes. The format is called "packed BCD".

If we want to increase such a second, minute or hour we can use INC R16, too. But it is 
more complicated then to detect whether the lower nibble exceeded 9: first we would 
have to copy the register (MOV R17,R16), then we have to clear the upper nibble (ANDI 
R17,0x0F) and then we can compare this with 10 (CPI R17,10) to decide if we would have 
to add (0x10 - 10) to R16, by that clearing the lower nibble and increasing the upper nib
ble.

The more simple solution for that uses a special hardware feature that each CPU, including 
the AVR CPUs, has: the half-overflow flag H in the status register. This flag bit signals if 



during adding an overflow from the lower to the upper nibble occurred. To use this feature 
we add 7 to the lower nibble: if the lower nibble was nine before adding, a half overflow 
would occur setting the H flag. The upper nibble would be increased and would already be 
fine. In case that the lower nibble was not nine H is clear and we would have to subtract 6 
from the result. The conditional branching instructions BRHC and BRHS can be used.

The source code would be: 

  ; Increase lower nibble of R16
  ldi R17,7 ; Add 7 to packed BCD
  add R16,R17 ; in R16
  brhs DoNotSubtract6
  ldi R17,6 ; Subtract 6 from packed
  sub R16,R17 ; from R16
DoNotSubtract6:
  ; Done

To save one register (R17) we can use SUBI R16,-7 instead, but the H-bit now is also re
versed: it is cleared when a half overflow occurred and set if not. So BRHS will have to be 
changed to BRHC.

Even though it is a little bit more complicated to increase the lower nibble it is much sim
pler to check if seconds or minutes exceed 59 or the hours exceed 23: just compare the 
packed BCD with the next higher limit. 

  cpi R16,0x60 ; Compare seconds with 60
  brne done
  clr R16 ; Restart seconds
  ; ...
  cpi R17,0x60 ; Compare minutes with 60
  brne done
  clr R17 ; Restart minutes
  ; ...
  cpi R18,0x24 ; Compare hours with 24
  brne done
  clr R18 ; Restart hours
  ; ...

Instead of two registers to be compared now we have only one to be compared if the 
hours reached 24. And instead of two registers to be cleared there is only one. A clear ad
vantage of packed BCD over ASCII and BCD.

The whole packed BCD second increase as assembler source code: 

  ldi ZH,High(sTimePbcd) ; Z points to hours in packed BCD format
  ldi ZL,Low(sTimePbcd)
  ldd R16,Z+2 ; Read the seconds
  subi R16,-7 ; Add seven
  brhc ChkSec ; H clear, tens increased, check seconds for 60
  subi R16,6 ; H set, subtract six
ChkSec:
  std Z+2,R16 ; Write seconds
  cpi R16,0x60 ; 60 seconds?
  brcs Done ; No, completed
  ; One minute is over
  clr R16 ; Restart seconds
  std Z+2,R16 ; Write seconds to SRAM
  ldd R16,Z+1 ; Read minutes
  subi R16,-7 ; Add seven



  brhc ChkMin ; H clear, tens increased, check minutes for 60
  subi R16,6 ; H set, subtract six
ChkMin:
  std Z+1,R16 ; Write minutes to SRAM
  cpi R16,0x60 ; 60 minutes reached?
  brcs Done ; No, completed
  ; One hour is over
  clr R16 ; Restart minutes
  std Z+1,R16 ; And write to SRAM
  ld R16,Z ; Read hours
  subi R16,-7 ; Add seven
  st Z,R16 ; And write to SRAM
  brhc ChkHour ; H clear, tens increased, check hours for 24
  subi R16,6 ; H set, subtract six
  st Z,R16 ; and write to SRAM
ChkHour:
  cpi R16,0x24 ; 24 hours over?
  brcs Done ; Smaller than 24
  clr R16 ; Restart hours
  st Z,R16 ; Write to SRAM
  ; Increase date here
Done: ; Increase done

This is it. Those who do not believe that it works can simulate the source code by setting 
the SRAM location sTimePbcd to some desired values, such as 0x23:0x59:0x59 and run 
through the code.

To display the time formatted as packed BCDs on an LCD the upper nibble has to convert
ed to an ASCII character, then the lower nibble. In case of the hours that goes like that: 

  ld R16,Z ; Z points to hour in SRAM, read hours
  swap R16 ; Exchange nibbles: make upper to lower nibble
  and R16,0x0F ; Isolate lower nibble
  subi R16,-'0' ; Add ASCII zero
  rcall LcdChar ; R16 to LCD
  ld R16,Z ; Read hours again
  andi R16,0x0F ; Isolate lower nibble
  subi R16,-'0' ; Add ASCII zero
  rcall LcdChar ; R16 to LCD

The further display of the separator, the minutes, another separator and the seconds is all 
the same. If you use the instruction LD R16,Z+ for the second copy from SRAM instruc
tion, you can call the above hour display three times and you are done.

That is all and your time processing is complete in packed BCD. 

2.4 Time in binary format
Finally the simplest of all time formats: sec
onds, minutes and hours in binary format. 
As a maximum of 59 has to be handled all 
fits into one byte. Increasing by one second 
is done with INC R16, detection of the com
plete minutes and hours is with CPI R16,60 resp.  CPI R16,24. The following example of 
seconds increase assumes that the time is in three registers. 

  .def rHour = R4 ; Hours register
  .def rMin = R5 ; Minutes register



  .def rSec = R6 ; Seconds register
IncSec:
  ldi R16,60 ; Detect end of seconds and minutes
  inc rSec
  cp rSec,R16 ; Seconds smaller than minute end?
  brcs Done ; No
  clr rSec ; Restart seconds
  inc rMin ; Increase minutes
  cp rMin,R16 ; Minutes smaller than hour end?
  brcs Done ; No
  clr rMin ; Restart minuts
  inc rHour ; Increase hours
  ldi R16,24 ; Hours per day
  cp rHour,R16 ; Hours smaller than day end?
  brcs Done ; No
  clr rHour ; Restart hours
Done:
  ; Time increase done

With those 14 simple instructions for a 24 hour clock it is a simple thing to program a 
clock. No reason at all to include a powerful datetime library and blow up those 14 simple 
instructions by at least 100-fold.

The display of  the binary encoded time information now requires a binary-to-decimal-
to-ASCII conversion. The following routine converts the binary in R16 to two ASCII digits 
and displays those on the LCD. 

Bin2Dec2:
  clr R0 ; Count tens in R0
Bin2Dec2a:
  inc R0 ; Increase counter
  subi R16,10 ; Subtract 10
  brcc Bin2Dec2a ; No carry, repeat counting and subtract
  subi R16,-10-48 ; Undo last subtraction (add 10) and
                  ; convert to ASCII (add 48)
  push R16 ; Is needed later on, pushed to stack
  ldi R16,'0'-1 ; Counter minus one plus ASCII zero
  add R16,R0 ; Add counter value
  rcall LcdChar ; R16 as character to LCD
  pop R16 ; Restore second digit from stack
  rjmp LcdChar ; and write to LCD 

The routine LcdChar, usually in the LCD include code, displays the character in R16 on the 
current position on the LCD and advances the cursor to the next position on the LCD. Due 
to the use of RCALL and PUSH/POP the stack has to be working.

For testing the routine you can point Z to the SRAM location SRAM_START and instead of 
the include routine LcdChar: you use  ST Z+,R16 and  RET to write the converted ASCII 
characters to SRAM. 

The complete display of the time then goes like this: 

Display:
  mov R16,rStd ; Hours to R16
  rcall Bin2Dec2 ; Call conversion and display routine
  ldi R16,':' ; Separator
  rcall LcdChar ; to LCD
  mov R16,rMin ; Minutes to R16
  rcall Bin2Dec2 ; Call conversion/display
  ldi R16,':' ; Another separator



  rcall LcdChar ; to LCD
  mov R16,rSec ; Seconds to R16
  rjmp Bin2Dec2 ; Jump to conversion/display

With these 20 instructions, of which 10 are for the display of binaries on the LCD, the 
whole stuff is not too sophisticated. 

2.5 The best format
... is of course the binary, but the other three formats have also their pro's. So choose 
what you want, anything goes. 
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3 Time and date
After having handled times we can handle dates as well. It works like times but has some 
extra rules making it a little bit more complicated: 

• Pope Gregor the XIIIth has, in the year 1582, issued the bulletin "Inter gravissi
mas", which decided that in contrary to seconds, minutes, hours and years days 
and years do not start with zero but with a one, 

• the fact that the speed of the earth in rouding the sun is not a simple number but 
has some fractional  parts  (365.242188 days),  that  make it  necessary to  define 
some extra time to the 365 days. The Egyptians rounded this up a bit (to 365.25 
days) and worked with that when they defined their tax paying algorithm. Pope 
Gregor wanted to be more exact, but did not e.g. define an extra "Earth rumble 
day" with a special duration of 5 hours, 48 minutes, 45 seconds, 43 milliseconds, 
199 microseconds and a few nanoseconds. Instead of this simple solution pope Gre
gor went into a much more sophisticated algorithm that makes the life of calendar 
designers and assembler programmers more complicated, 

• he decided that the months have not an equal number of days, e.g. ten months 
from 0 to 9, with 36 days each (day 0 to 35), but defined 12 months instead, even 
though 365 / 12 = 30.416666 (periodic) and started with 1 instead, 

• the decision to choose 12 as the month's basis leaded to further complicated conse
quences: 

• the number of days per month was not a constant but varied, 
• this number of days did not follow simple rules, e.g. such as 30/31 alternat

ing with the December length varying, but the alternating rule was reversed 
between July and August and February's length was largely varied, 

• the February's length was defined as being 28, but 
• not every four years if the year can be divided by four without a frac

tional part, then it is 29 days long, 
• but not every 100 years, when the year can be divided by 100 without 

a fractional part, then it is 28 days long, 
• but not every 400 years, when the year can be divided by 400 without 

a fractional part, then it is 29 days long, 
• he further decided that one week has seven weekdays and not 10, an ancient 

"magic" number rather than a decimal's society preferred selection, but 
• their numbering remained undefined, still causing confusion: some start with the 

Monday, others with the Sunday. 

When writing dates on the LCD, and when storing those in SRAM, further illogical decisions 
complicate the life of the assembler programmers. While the time follows the simple rule 
that the further left is the more significant number (hours:minutes:seconds) dates are 
confused by other rules: 



• The format convention Days:Months:Years reverses priority. 
• The format convention Months/Days/Years simply confuses any priority rule. 
• The format convention Years:Months:Days would be similar to the time format, but 

is rarely used. 

But whatever you want to use: place them in the same row in SRAM as you want to dis
play them, either forwards or backwards, so your pointer can increase or decrease after 
having outputted it. Or use displacement pointers.

This  all  makes  programmers  con
fused.  To  determine  the  number  of 
days of a month we need this algo
rithm.  Looks  complicated  but  isn't 
that complicated in assembler: 

;
; Subroutine calculates the 
number of days of a month
;   Month in rMonth, Year in 
rYear, result in rDom
;
DaysOfMonth:
  ldi rDom,31 ; 31 days
  cpi rMonth,2 ; February?
  brcs DaysOfMonthRet ; January
  brne DaysOfMonth1 ; Not 
February
  ; February
  ldi rDom,28 ; No leap year
  mov R16,rYear ; Leap year?
  andi R16,0x03 ; Last two bits 
of year?
  brne DaysOfMonthRet ; Last two 
bits not 00
  ldi rDom,29 ; Leap year
  rjmp DaysOfMonthRet
DaysOfMonth1:
  mov R16,rMonth ; Copy month
  cpi R16,8
  brcs DaysOfMonth2 ; March to July
  dec R16 ; Monthes larger or equal August, reverse
DaysOfMonth2:
  ldi rDom,31 ; Months with 31 days
  andi rmp,0x01 ; Uneven?
  brne DaysOfMonthRet
  ldi rDom,30
DaysOfMonthRet:
  ret ; Done

Simulation of the DOM 
routine with the mon
thes 1 to 12 for a leap 
year (first  line) and a 
non-leap year (second 
line) demonstrates that the days for the months (+01 to +0C), as written to the SRAM, 
are correct.

Simulation was, of course, performed with avr_sim. 

http://www.avr-asm-tutorial.net/avr_sim/index_en.html


With these tools we can start to design a com
plete  time  and  date  flow  diagram  for  a 
date/time  clock.  Rectangles  are  calculations, 
rhombuses are display operations and squares 
rotated by 45 degrees are decisions or condi
tional branches.

In the algorithm only those display elements 
are  updated  that  are  changed  during  an  in
crease of that second. As a change of the year 
requires an update to all displayed elements on 
the LCD the update algorithm runs from bot
tom to the top while the time and date algo
rithm runs from top to bottom.

The first decision is that the date and time on 
the LCD is controlled by a different routine dur
ing a date and time input.  Note that  in  that 
case the  increase in time does not  work but 
waits for a completion of the input procedure. 

Here the complete increase time/date routine 
in assembler: 

;
; Increase time in seconds
;
IncSec:
  ldi ZH,High(DateTimeBuffer)
  ldi ZL,Low(DateTimeBuffer)
  ldd R16,Z+6 ; Seconds
  inc R16
  std Z+6,R16
  cpi R16,60
  brcs DisplaySec
  clr R16
  std Z+6,R16
  ldd R16,Z+5 ; Minutes
  inc R16
  std Z+5,R16
  cpi R16,60
  brcs DisplayMin
  clr R16
  std Z+5,R16
  ldd R16,Z+4 ; Hours
  inc R16
  std Z+4,R16
  cpi R16,24
  brcs DisplayHours
  clr R16
  std Z+4,R16
  ld R16,Z ; Weekdays
  inc R16
  st Z,R16
  cpi R16,7
  brcs IncDay
  clr R16
  st Z,R16
IncDay:
  rcall DaysOfMonth ; Get days of that month in R16
  inc R16
  mov rData,R16



  ldd R16,Z+1
  inc R16
  std Z+1,R16
  cp R16,R0
  brcs DisplayWeekdays
  ldi R16,1
  std Z+1,R16
  ldd R16,Z+2 ; Monthes
  inc R16
  std Z+2,R16
  cpi R16,13
  brcs DisplayMonthes
  ldi R16,1
  std Z+2,R16
  ldd R16,Z+3 ; Years
  inc R16
  cpi R16,100
  std Z+3,R16
  brcs DisplayYears
  clr R16
  std Z+3,R16
DisplayYears:
  ; ...
DisplayMonthes:
  ; ...
DisplayWeekdays:
  ; ...
DisplayHours:
  ; ...
DisplayMinutes:
  ; ...
DisplaySeconds:
  ; ...
  ret

To simulate the work of IncSec: here a few tests. First, the year change on the 31nd of 
December, 2017, is shown. The line from address 

• 0x0070 shows the original data for the Sunday at that date, for 23:23:59, in binary 
format, 

• 0x0080 shows the date/time increased by one second, as binary, 
• 0x0090 displays the original date/time in ASCII, and 
• 0x00B0 on shows the increased date/time in ASCII. 

The change in the year works correct.

Simulation was again, of course, performed with avr_sim.

http://www.avr-asm-tutorial.net/avr_sim/index_en.html


This simulates the seconds increase for February 28, 2019, which was not a leap year. 
Also correct. 

And this is the seconds increase on February 28, 2020, which is a leap year. The routine 
obviously works correct. 

I wish you success in the self-making of date/time routines in assembler. 
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